

LS Measuring Procedures in Analysis

S. Möbius¹⁾, T. Möbius¹⁾, A.Tarancon¹⁾²⁾, J. Wendel¹⁾³⁾

- 1) German Society for Liquid Scintillation DGFS e.V., Spoecker Weg 54A, 76351 Linkenheim, Germany
- 2) Departament de Chimica Analitica, Universitat de Barcelona, Marti I Franques 1-11, Barcelona 08028, Spain
- ³⁾ Karlsruhe Institute of Technology (KIT), ITEP-TLK, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Motivation

This Handbook on Liquid Scintillation LS presents a compilation of the contemporary most important radioanalytical procedures applying this measuring technology. It serves as a manual for the determination of radionuclides by LS. We wish that the fully revised and extended 3rd edition would further spread this modern and future prospective methodology also beyond Radioanalysis.

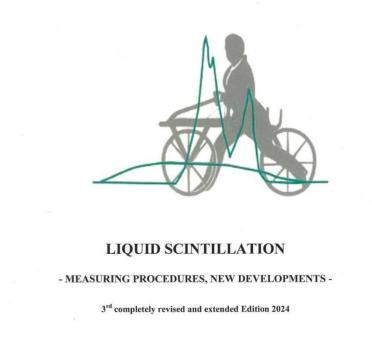
Content

> 1. Introduction

- 1.1.The Liquid Scintillation Process
- 1.2. Quenching
- 1.3. Cerenkov Counting
- 1.4. Separation of α and β/γ -Radiation
- 1.5.TDCR Method
- 1.6. Miniaturization of LS Devices
- 1.7. Cocktails and Sample Preparation
- 1.8. Extraction for Radionuclide Separation and Enrichment

> 2. Measuring Procedures

- 2.1. Instrument Calibration Procedures
- 2.2. Natural Radionuclides
- 2.3. Radionuclides from Nuclear Fission Activities
- 2.4. Radiation Protection
- > 3. Solid Scintillators and Microspheres
- ➤ 4. Quality Assurance and Uncertainty Budget
- > 5. Literature


Selected Procedures

- Quick Method for Key Nuclides in Drinking Water (Rn-222, Ra-226/8, Pb-210, H-3, gross α/β)
- > LL Tritium in Sea Water by Electrolytic Enrichment
- RAD Disk Based Methods and Plastic Scintillator Microspheres for Ra and Sr-isotopes, Pb-210 and Tc-99^(m)
- TDCR Cerenkov Counting in Targeted α-Therapy (Ra-224/Pb-212)
- Radiocarbon in Biobased Products (Fuel)
- > Rapid Method for Sr Isotopes by TDCR Cerenkov
- Artificial Radionuclides in the Nuclear Fuel Cycle (Fe-55, Ni-63 and Ca-41 in decommissioning activities)
- > Contamination (e.g. α and Ni-63 by smear) and Incorporation Control (e.g. P-32 in urine)

and others also related to FIA and Luminescense Counting

Abstract

Modern LS with extractive sample preparation, α/β Pulse Shape Discrimination, Cerenkov Counting and Triple-to-Double-Coincidence-Ratio for absolute counting is summarized. Measuring procedures are dedicated to natural radionuclides as well as radionuclides from nuclear fission activities like decommissioning. Applications in Radiation Protection and Medicine as well as solid microsphere applications with relevance to FIA round up the spectrum of content. Quality Assurance aspects are discussed in the last part.

DGFS e.V. German Society for Liquid Scintillation Spectromet Karlsruhe Institute of Technology, 2024 Karlsruhe

A comprehensive literature survey till 2024 facilitates further studies.